光系统II(PSII)是放氧光合生物利用太阳能进行光驱动裂解水反应的场所,它由具有放氧功能的核心复合体和具有光能捕获、传递功能的捕光天线系统组成。隐藻作为一种在进化上具有独特地位的单细胞真核放氧光合生物,能够在海洋和淡水环境中生长,在全球碳循环和生物地球化学循环中发挥重要作用。隐藻光系统色素膜蛋白复合体含有叶绿素a/c和特殊的类胡萝卜素异黄素(alloxanthin)等色素分子,不仅拓展了吸收光谱,还在光保护方面发挥重要作用。然而,此前关于隐藻光系统II-捕光天线复合体的结构及其光能利用和调节机制并不清楚。
中国科学院植物研究所光合膜蛋白结构生物学研究组利用冷冻电镜技术首次解析了隐藻(Chroomonas placoidea)光系统II-捕光天线超级复合体的高分辨率(2.47埃)冷冻电镜结构。该超级复合体是具有C2对称性的同源二聚体,整体由两个PSII核心复合体及12个异黄素-叶绿素a/c蛋白(alloxanthin chlorophyll a/c-binding proteins,ACPs)天线亚基及2个特殊的叶绿素a结合蛋白(CCPII-S)天线亚基组成,包含60个蛋白亚基,300个色素分子,总分子量约为1.1 MDa。12个ACPII亚基对称地结合在PSII核心复合体两侧,呈现了不同于目前已观察到的其它真核藻类及高等植物PSII捕光天线排列和结合形式。CCPII-S拥有一个单跨膜螺旋的N端和一个较长的C端,不仅介导了外围ACPII亚基之间及天线与PSII核心的结合,还参与了外围ACPII天线亚基与PSII核心之间的能量传递。
该研究成果打破了原有对真核光合生物光系统II捕光天线复合体存在形式及其超分子组装结构的认识,为揭示浮游光合生物隐藻在水下波动光环境下有效吸收和耗散光能的分子机制提供了重要结构基础,有助于理解光合生物光合系统的进化机制和光适应机制,这将对设计新型光能利用光合系统和高光效作物及饲草提供重要启示。
该研究成果于5月28日在线发表在国际学术期刊Nature Communications。植物所博士研究生毛志远和李星玥为论文共同第一作者,中国植物学会植物整合组学专业委员会委员、韩广业研究员为论文通讯作者,匡廷云院士与中国植物学会植物整合组学专业委员会秘书长、王文达研究员和沈亮亮副研究员等也参与了该研究。研究工作得到了国家重点研发计划、国家自然科学基金、中国科学院先导专项、中国科学院稳定支持基础研究领域青年团队计划等项目资助,并得到植物所公共技术服务中心的支持。
文章链接:
https://www.nature.com/articles/s41467-024-48878-x
隐藻(C. placoidea)PSII-ACPII超级复合体的结构
文章来源:中国科学院植物研究所